CONSTRUCTION OF COEND AND THE RECONSTRUCTION THEOREM OF BIALGEBRAS

ABSTRACT. Assume k is a field and let $\mathcal{F} : \mathcal{C} \to Vect_k$ be a small k-linear functor from a k-linear abelian category \mathcal{C} to the category of vector spaces over the field k, the purpose of this note is to use a little knowledge of linear algebra and category to give the description of end(\mathcal{F}) and coend(\mathcal{F}), and then we give the reconstruction theorem of bialgebras by using this description. We use the constructive method to make end(\mathcal{F}) and coend(\mathcal{F}) easy to understand, and some of the proofs are new in this note.

1. INTRODUCTION

Let k be a field and let $\mathcal{F} : \mathcal{C} \to Vect_k$ be a k-linear functor from a small k-linear abelian category \mathcal{C} to the category of vector spaces over the field k, and we will use the \mathcal{F} and the $Vect_k$ without explanation in the following content. This paper is organized as follows. In Section 2, we will give the description of $end(\mathcal{F})$ (resp. $coend(\mathcal{F})$) as vector spaces, and we will give an example of $coend(\mathcal{F})$ as our motivation for this note. Then we will give the coalgebra structure of $coend(\mathcal{F})$ when $\dim(\mathcal{F}(X)) < \infty$ for all $X \in Ob(\mathcal{C})$, and then we will prove that $end(\mathcal{F}) = coend(\mathcal{F})^*$ as algebra by using a different way from that in [3, Section 1.10]. If $(\mathcal{C}, \otimes, I)$ is a strict tensor category and $(\mathcal{F}, Id_I, \mathcal{F}_2)$ is a tensor functor such that $Im\mathcal{F}$ are finite dimensional, then we will use a constructive approach to give the bialgebra structure of $coend(\mathcal{F})$ in Section 3. At last, we give the reconstruction theorem of bialgebras by using our description of the bialgebra $coend(\mathcal{F})$. We must point out that this theorem has been obtained by many articles, what we have done is to describe the bialgebra structure of $coend(\mathcal{F})$ concretely.

2. $end(\mathcal{F})$ AND $coend(\mathcal{F})$ AS VECTOR SPACES

Let A be an algebra over k and let $\mathcal{G} : A\text{-Mod} \longrightarrow Vect_k$ be the forgetful functor from the category of left A modules to $Vect_k$, then we can use the the algebra $End(\mathcal{G}) =$ $Nat(\mathcal{G}, \mathcal{G})$ of natural transformations from \mathcal{G} to \mathcal{G} to reconstruct A through the algebra isomorphism $\varphi : A \to End(\mathcal{G})$, where $\varphi(a)_V := a_V$ for $V \in Ob(A\text{-Mod})$. Dually, if C is a coalgebra over k and let $\mathcal{E} : C\text{-Comod} \longrightarrow Vect_k$ be the forgetful functor from the category of right C comodules to $Vect_k$, then we can ask if we can reconstruct C by using the functor \mathcal{E} ? To answer this question, we need the dual object of $End(\mathcal{F})$ to reconstruct C. But the definition of $End(\mathcal{F})$ depends on elements of it, and thus we

¹⁹⁹¹ Mathematics Subject Classification. 18A30 (primary), 16T15 (secondary).

Key words and phrases. end(coend), Reconstruction theorem.

[†]Supported by NSFC 11722016.

recall the equivalent definition of $\operatorname{End}(\mathcal{F})$ by using morphisms to get the dual concept of it.

2.1. Definition of $\operatorname{end}(\mathcal{F})$ and $\operatorname{coend}(\mathcal{F})$ as vector spaces. For convenience, we introduce a k-linear bifunctor $\operatorname{Hom} : \mathcal{C}^{op} \times \mathcal{C} \longrightarrow \operatorname{Vect}_k$, which is defined by $\operatorname{Hom}(X,Y) := \operatorname{Hom}_k(\mathcal{F}(X),\mathcal{F}(Y))$ for $X,Y \in \operatorname{Ob}(\mathcal{C})$ and $\operatorname{Hom}(f^{op},g)(T) := F(g) \circ$ $T \circ F(f)$ for $f \in \operatorname{Hom}_{\mathcal{C}}(X',X)$, $g \in \operatorname{Hom}_{\mathcal{C}}(Y,Y')$, $T \in \operatorname{Hom}_k(\mathcal{F}(X),\mathcal{F}(Y))$, here f^{op} is the morphism f in \mathcal{C}^{op} . In particular, $\operatorname{Hom}(f^{op},\operatorname{Id}_Y)(T) = T \circ F(f)$ and $\operatorname{Hom}(\operatorname{Id}_X,g)(T) = F(g) \circ T$. Let $\mathcal{H} : \mathcal{C} \to \mathcal{D}$ be a k-linear functor, where \mathcal{C} , \mathcal{D} are k-linear abelian categories, then the general definition of $\operatorname{end}(\mathcal{H})$ and $\operatorname{coend}(\mathcal{H})$ can be found in [1, 2.1.6. Definition]. But for our purposes, we consider only the case where $\{\mathcal{H}(X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ are vector spaces in this note.

Definition 2.1. [1, 2.1.6. Definition] The end(\mathcal{F}) is a vector space such that following conditions

- (i) there is a family of linear maps $\{\pi_X : \operatorname{end}(\mathcal{F}) \longrightarrow \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})},$
- (ii) the following diagrams commute for all $X, Y \in Ob(C)$ and $f \in Hom_{\mathcal{C}}(X, Y)$,

$$\operatorname{Hom}(Y,Y) \xrightarrow{\operatorname{Hom}(f^{op},\operatorname{Id}_Y)} \operatorname{Hom}(X,Y) \xrightarrow{\pi_Y} \operatorname{Hom}(\mathcal{Id}_X,f) \xrightarrow{\pi_X} \operatorname{Hom}(\mathcal{Id}_X,f)$$

Here π_X and π_Y are linear maps of (i).

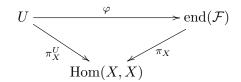
(iii) end(\mathcal{F}) is a final object of $Vect_k$ such that (i) and (ii), i.e if there is a vector space U and there are linear maps $\{\pi_X^U : U \longrightarrow Hom(X, X)\}_{X \in Ob(\mathcal{C})}$ making the following diagrams commute for all $X, Y \in Ob(\mathcal{C})$ and $f \in Hom_{\mathcal{C}}(X, Y)$,

$$\operatorname{Hom}(Y,Y) \xrightarrow{\operatorname{Hom}(f^{op},\operatorname{Id}_Y)} \operatorname{Hom}(X,Y)$$

$$\pi_Y^U \uparrow \qquad \qquad \uparrow \operatorname{Hom}(\operatorname{Id}_X,f)$$

$$U \xrightarrow{\pi_X^U} \qquad \qquad \to \operatorname{Hom}(X,X)$$

then we can find a unique linear map $\varphi : U \longrightarrow \text{end}(\mathcal{F})$ making the following diagrams commute for all $X \in \text{Ob}(\mathcal{C})$,



It can be seen that the above condition (ii) is equivalent to $\pi_Y(x) \circ \mathcal{F}(f) = \mathcal{F}(f) \circ \pi_X(x)$ for $X, Y \in Ob(\mathcal{C}), f \in Hom_{\mathcal{C}}(X, Y), x \in end(\mathcal{F})$. If U is a vector space with a family of linear maps $\{\pi_X^U : U \longrightarrow Hom(X, X)\}_{X \in Ob(\mathcal{C})}$ and these linear maps satisfy (ii), (iii) of Definition 2.1, then we will call that U is a realization of end(\mathcal{F}). Naturally we have following proposition **Proposition 2.2.** The end(\mathcal{F}) above exists and it is unique up to isomorphism.

Proof. If we define $\{\pi_X^{\mathcal{F}} : \operatorname{End}(\mathcal{F}) \longrightarrow \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ by $\pi_X^{\mathcal{F}}(\eta) = \eta_X$ where $\eta \in \operatorname{End}(\mathcal{F})$ and $X \in \operatorname{Ob}(\mathcal{C})$, then it is easy to see that these linear maps satisfy the conditions (ii),(iii) of Definition 2.1. Therefore $\operatorname{End}(\mathcal{F})$ is a realization of $\operatorname{end}(\mathcal{F})$. Because $\operatorname{end}(\mathcal{F})$ is a final object, we know $\operatorname{end}(\mathcal{F})$ is unique up to isomorphism as vector space.

Dually, we can now define the coend(\mathcal{F}) by changing the direction of arrows of diagrams in Definition 2.1.

Definition 2.3. [1, 2.1.6. Definition] The coend(\mathcal{F}) is a vector space such that following conditions

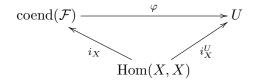
- (i) there is a family of linear maps $\{i_X : \operatorname{Hom}(X, X) \longrightarrow \operatorname{coend}(\mathcal{F})\}_{X \in \operatorname{Ob}(\mathcal{C})}$,
- (ii) the following diagrams commute for all $X, Y \in Ob(C)$ and $f \in Hom_{\mathcal{C}}(Y, X)$,

Here i_X and i_Y are linear maps of (i).

(iii) coend(\mathcal{F}) is an initial object of Vect_k such that (i) and (ii), i.e if there is a vector space U and there are linear maps $\{i_X^U : \operatorname{Hom}(X, X) \longrightarrow U\}_{X \in \operatorname{Ob}(\mathcal{C})}$ making the following diagrams commute for all $X, Y \in \operatorname{Ob}(C)$ and $f \in \operatorname{Hom}_{\mathcal{C}}(Y, X)$,

$$\begin{array}{c|c} \operatorname{Hom}(Y,Y) \xleftarrow{\operatorname{Hom}(f^{op},\operatorname{Id}_Y)} \operatorname{Hom}(X,Y) \\ & & \downarrow \\ i^U_Y & & \downarrow \\ U \xleftarrow{i^U_X} & \operatorname{Hom}(\operatorname{Id}_X,f) \\ U \xleftarrow{i^U_X} & \operatorname{Hom}(X,X) \end{array} \end{array}$$

then we can find a unique linear map $\varphi : \text{coend}(\mathcal{F}) \longrightarrow U$ making the following diagrams commute for all $X \in \text{Ob}(\mathcal{C})$,



If U is a vector space with a family of linear maps $\{i_X^U : \operatorname{Hom}(X, X) \longrightarrow U\}_{X \in \operatorname{Ob}(\mathcal{C})}$ which satisfy the conditions (ii), (iii) of Definition 2.3, then we will call U is a realization of coend(\mathcal{F}). Note that the above condition (ii) is equivalent to $i_X(\mathcal{F}(f) \circ T) =$ $i_Y(T \circ \mathcal{F}(f))$ for $X, Y \in \operatorname{Ob}(\mathcal{C}), f \in \operatorname{Hom}_{\mathcal{C}}(Y, X)$ and $T \in \operatorname{Hom}(X, Y)$, which we will use frequently. Similar to Proposition 2.2, we have

Proposition 2.4. The coend(\mathcal{F}) above exists and it is unique up to isomorphism.

Proof. Let $V := \bigoplus_{X \in Ob(\mathcal{C})} Hom(X, X)$ and we denote J be the subspace of V which is linear spanned by $\{F(f) \circ T - T \circ F(f) | X, Y \in Ob(\mathcal{C}), f \in Hom_{\mathcal{C}}(X, Y), T \in$ $Hom(Y, X)\}$. If we define $\{j_X : Hom(X, X) \longrightarrow V/J\}_{X \in Ob(\mathcal{C})}$ by $j_X(S) = S + J$ for $X \in Ob(\mathcal{C})$, then it is easy to see that these linear maps satisfy the conditions (ii),(iii) of Definition 2.1. Therefore the quotient space V/J is a realization of coend(\mathcal{F}). Since coend(\mathcal{F}) is an initial object, we know coend(\mathcal{F}) is unique up to isomorphism as vector space. □

Returning to the original problem at the beginning of this section, that is can we reconstruct the coalgebra C by using the forgetful functor $\mathcal{E} : C\text{-}Comod \longrightarrow Vect_k$? For technical reasons, we use another forgetful functor $\mathcal{T} : C\text{-}Comod_f \longrightarrow Vect_k^f$ instead of using the \mathcal{E} , where $C\text{-}Comod_f$ is the category of finite dimensional right C comodules and $Vect_k^f$ is the category of finite dimensional vector spaces over k. The following example shows that the coalgebra C can be reconstructed from $coend(\mathcal{T})$ as vector space. Furthermore, we will prove that the coalgebra C can be reconstructed from coend(\mathcal{T}) as coalgebra in Example 2.9 and this example is the main motivation of this note. Recall that if U, V are finite dimensional vector spaces and if we denote the linear dual space of U by U^* , then $Hom_k(U, V) = \{\beta \otimes x \mid \beta \in U^*, x \in V, (\beta \otimes x)(y) := \beta(y)x\}$. In order to describe the following results more convenient, we will use this fact often without further comment. Moreover we agree that $\beta \otimes x, \gamma \otimes y...$ means that $(\beta \otimes x)(u) := \beta(u)x, (\gamma \otimes y)(u) := \gamma(u)y...,$ where English letters represent elements of a given vector space and Greek alphabet represent elements of dual space of this vector space.

Example 2.5. Let $\mathcal{T} : C\text{-}Comod_f \longrightarrow Vect_k^f$ be the forgetful functor above, and if we define a family of linear maps $\{i_X : \operatorname{Hom}_k(X, X) \longrightarrow C\}_{X \in Ob(\mathcal{C})}$ by $i_X(\beta \otimes x) := \beta(x_{(0)})x_{(1)}$ then we will show that C is a realization of coend \mathcal{T} . Therefore the coalgebra C can be reconstructed from coend(\mathcal{T}) as vector space.

Let $g \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ and taking $(\gamma \otimes y) \in \operatorname{Hom}_{k}(Y,X)$, then we have $g(y_{(0)}) \otimes y_{(1)} = g(y)_{(0)} \otimes g(y)_{(1)}$ by definition of the g. So $i_{Y}[(\gamma \otimes y) \circ g] = i_{X}[g \circ (\gamma \otimes y)]$ and this implies that $\{i_{X}\}_{X \in \operatorname{Ob}(\mathcal{C})}$ such that (ii) of Definition 2.3.

Assume U is a vector space with linear maps $\{i_X^U : \operatorname{Hom}_k(X, X) \longrightarrow U\}_{X \in \operatorname{Ob}(\mathcal{C})}$ and these maps satisfy (ii) of Definition 2.3. Define $\varphi : C \longrightarrow U$ by $\varphi(c) := i_{N_c}^U(\epsilon \otimes c)$ for $c \in C$, where N_c is the smallest subcoalgebra of C which contains c and its comodule structure is given by Δ . Then we will show φ satisfy the diagram of (iii) in Definition 2.3 and it is unique.

Taking $(\beta \otimes x) \in \operatorname{Hom}_k(X, X)$, directly we have $\varphi \circ i_X(\beta \otimes x) = i_{N_c}^U(\epsilon \otimes c)$ where $c = \beta(x_{(0)})x_{(1)}$. Since X is finite dimensional, we can choose a finite dimensional subcoalgebra $C_1 \subseteq C$ such that $\rho_X(X) \subseteq X \otimes C_1$. Then $\rho_X \in \operatorname{Hom}_{\mathcal{C}}(X, X \otimes C_1)$ where $\rho_{X \otimes C_1} := (\operatorname{Id} \otimes \Delta)$. Let $(\beta \otimes \epsilon) \otimes x \in \operatorname{Hom}_k(X \otimes C_1, X)$ defined by $((\beta \otimes \epsilon) \otimes x)(y \otimes d) := \beta(y)\epsilon(d)x$, then $((\beta \otimes \epsilon) \otimes x) \circ \rho_X = \beta \otimes x$ and $\rho_X \circ ((\beta \otimes \epsilon) \otimes x) = (\beta \otimes \epsilon) \otimes (x_{(0)} \otimes x_{(1)})$. Since (ii) of Definition 2.3, we get

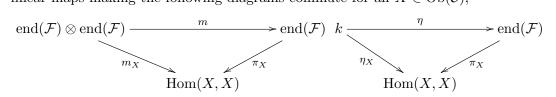
(2.1)
$$i_X^U(\beta \otimes x) = i_{X \otimes C_1}^U[(\beta \otimes \epsilon) \otimes (x_{(0)} \otimes x_{(1)})].$$

Let $f := (\beta \otimes \mathrm{Id}) \in \mathrm{Hom}_{\mathcal{C}}(X \otimes C_1, C_1)$ and $T := [\epsilon \otimes (x_{(0)} \otimes x_{(1)})] \in \mathrm{Hom}_k(C_1, X \otimes C_1)$, where $(\beta \otimes \mathrm{Id})(x \otimes c_1) := \beta(x)c_1$ and $[\epsilon \otimes (x_{(0)} \otimes x_{(1)})](c_1) := \epsilon(c_1)x_{(0)} \otimes x_{(1)})$ for $x \in X, c_1 \in C$, then we know $i_{X \otimes C_1}^U(T \circ f) = i_{C_1}^U(f \circ T)$ since (ii) of Definition 2.3. Because $T \circ f = (\beta \otimes \epsilon) \otimes (x_{(0)} \otimes x_{(1)})$ and $f \circ T = \epsilon \otimes c$, we get

(2.2)
$$i_{X\otimes C_1}^U[(\beta\otimes \epsilon)\otimes (x_{(0)}\otimes x_{(1)})] = i_{C_1}^U(\epsilon\otimes c).$$

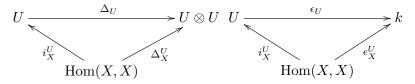
Owing to (2.1), (2.2), we know $i_X^U(\beta \otimes x) = i_{C_1}^U(\epsilon \otimes c)$. Because there is a natural inclusion $N_c \hookrightarrow C_1$, we get $i_{C_1}^U(\epsilon \otimes c) = i_{N_c}^U(\epsilon \otimes c)$. Since $\varphi \circ i_X(\beta \otimes x) = i_{N_c}^U(\epsilon \otimes c)$ and $i_X^U(\beta \otimes x) = i_{C_1}^U(\epsilon \otimes c)$, we have $\varphi \circ i_X(\beta \otimes x) = i_X^U(\beta \otimes x)$ and hence $\varphi \circ i_X = i_X^U$. Note that $\varphi \circ i_{N_c}(\epsilon \otimes c) = i_X^U(\epsilon \otimes c)$ which gives the uniqueness of φ .

2.2. Coalgebra structure on $\operatorname{coend}(\mathcal{F})$. We have known that the $\operatorname{End}(\mathcal{F})$ is a realization of $\operatorname{end}(\mathcal{F})$ and because the $\operatorname{End}(\mathcal{F})$ is an algebra, so $\operatorname{end}(\mathcal{F})$ has a natural algebra structure. At the same time, the algebra structure of $\operatorname{end}(\mathcal{F})$ can also be determined by the following way. Assume $\{\pi_X^U : U \longrightarrow \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ is a realization of $\operatorname{end}(\mathcal{F})$, if we consider linear maps $\{m_X : \operatorname{end}(\mathcal{F}) \otimes \operatorname{end}(\mathcal{F}) \longrightarrow \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}, \{\eta_X : k \longrightarrow \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}, \text{ where } m_X, \eta_X \text{ are defined by } m_X(a \otimes b) := \pi_X(a)\pi_X(b) \text{ and } \eta_X(1) := \operatorname{Id}_X \text{ for } X \in \operatorname{Ob}(\mathcal{C}), \text{ then we will get the multiplication and the unit of <math>\operatorname{end}(\mathcal{F})$ through these linear maps by using (iii) of Definition 2.1, i.e the the multiplication m and the unit η of $\operatorname{end}(\mathcal{F})$ are the unique linear maps making the following diagrams commute for all $X \in \operatorname{Ob}(\mathcal{C})$,



Dually, we can define coalgebra structure of $\operatorname{coend}(\mathcal{F})$. For technical reasons, we require $\mathcal{F}(X)$ are finite dimensional for all $X \in \operatorname{Ob}(\mathcal{C})$ in the following content. Let $\{x_i\}_{i=1}^n$ be a basis for $\mathcal{F}(X)$ and let $\{x^i\}_{i=1}^n$ be the dual basis for $\mathcal{F}(X)^*$, and we recall that $\operatorname{Hom}(X, X)$ has a natural coalgebra structure which is defined by $\Delta_X(\beta \otimes x) := \sum_{i=1}^n (\beta \otimes x_i) \otimes (x^i \otimes x)$ and $\epsilon_X(\beta \otimes x) := \beta(x)$, where $\beta \in X^*, x \in X$ and $(\beta \otimes x)(y) := \beta(y)x, (x^i \otimes x)(y) := x^i(y)x$. Now we can use this family of coalgebra algebras $\{\operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ to give coalgebra structure of $\operatorname{coend}(\mathcal{F})$.

Definition 2.6. Assume that $\{i_X^U : \operatorname{Hom}(X, X) \longrightarrow U\}_{X \in \operatorname{Ob}(\mathcal{C})}$ is a realization of $\operatorname{coend}(\mathcal{F})$ and let $\{\Delta_X^U : \operatorname{Hom}(X, X) \longrightarrow U \otimes U\}_{X \in \operatorname{Ob}(\mathcal{C})}, \{\epsilon_X^U : \operatorname{Hom}(X, X) \longrightarrow k\}_{X \in \operatorname{Ob}(\mathcal{C})}$ be linear maps defined by $\Delta_X^U := (i_X^U \otimes i_X^U) \circ \Delta_X$ and $\epsilon_X^U := \epsilon_X$. Then the coalgebra structure $(U, \Delta_U, \epsilon_U)$ is defined by the unique linear maps Δ_U, ϵ_U which making the following diagrams commute for all $X \in \operatorname{Ob}(\mathcal{C})$,



The following two propositions show that existence of Δ_U, ϵ_U of Definition 2.6 and $(U, \Delta_U, \epsilon_U) \cong (V, \Delta_V, \epsilon_V)$, where $\{i_X^U : \operatorname{Hom}(X, X) \longrightarrow U\}_{X \in \operatorname{Ob}(\mathcal{C})}$ is another realization of coend(\mathcal{F}) and $(V, \Delta_V, \epsilon_V)$ is given by the Definition 2.6 above. For these reasons, the coalgebra coend(\mathcal{F}) given by the Definition 2.6 is unique up to isomorphism as coalgebra.

Proposition 2.7. The Δ_U, ϵ_U of Definition 2.6 exist and $(U, \Delta_U, \epsilon_U)$ is a coalgebra.

Proof. To show the Δ_U, ϵ_U exist, it is enough to check that $\{\Delta_X^U : \operatorname{Hom}(X, X) \longrightarrow U \otimes U\}_{X \in \operatorname{Ob}(\mathcal{C})}, \{\epsilon_X^U : \operatorname{Hom}(X, X) \longrightarrow k\}_{X \in \operatorname{Ob}(\mathcal{C})}$ satisfy the (ii) of Definition 2.3. Let $\{x_i\}_{i=1}^n$ (resp. $\{y_i\}_{i=1}^m$) be a basis for $\mathcal{F}(X)$ (resp. $\mathcal{F}(Y)$) and let $\{x^i\}_{i=1}^n$ (resp. $\{y^i\}_{i=1}^m$) be the dual basis for $\mathcal{F}(X)^*$ (resp. $\mathcal{F}(Y)^*$), and taking $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y), (\beta \otimes x) \in \operatorname{Hom}(Y, X)$, then we have

$$\begin{split} \Delta_X^U((\beta \otimes x) \circ \mathcal{F}(f)) &= \sum_{i=1}^n i_X^U(\beta \circ \mathcal{F}(f) \otimes x_i) \otimes i_X^U(x^i \otimes x) \\ &= \sum_{i=1}^n i_Y^U(\beta \otimes \mathcal{F}(f)(x_i)) \otimes i_X^U(x^i \otimes x) \\ &= \sum_i^n \sum_{j=1}^m i_Y^U(\beta \otimes y_j < y^j, \mathcal{F}(f)(x_i) >) \otimes i_X^U(x^i \otimes x) \\ &= \sum_i^n \sum_{j=1}^m i_Y^U(\beta \otimes y_j) \otimes i_X^U(< y^j, \mathcal{F}(f)(x_i) > x^i \otimes x) \\ &= \sum_{j=1}^m i_Y^U(\beta \otimes y_j) \otimes i_X^U(y^j \circ \mathcal{F}(f) \otimes x) \\ &= \sum_{j=1}^m i_Y^U(\beta \otimes y_j) \otimes i_X^U(y^j \otimes \mathcal{F}(f)(x)) \\ &= \Delta_Y^U(\mathcal{F}(f) \circ (\beta \otimes x)) \end{split}$$

and $\epsilon_X^U((\beta \otimes x) \circ \mathcal{F}(f)) = \beta \circ \mathcal{F}(f)(x) = \epsilon_Y^U(\mathcal{F}(f) \circ (\beta \otimes x))$, hence we know the Δ_U, ϵ_U exist. Let $T \in \operatorname{Hom}(X, X)$ and we denote $i_X^U(T)$ of Definition 2.6 by \overline{T} , then $\Delta_U(\overline{T}) = (i_X^U \otimes i_X^U) \circ \Delta_X(T)$ and $\epsilon_U(\overline{T}) = \epsilon_X(T)$ by definition and so $(\Delta_U \otimes \operatorname{Id}) \circ \Delta_U(\overline{T}) = (\operatorname{Id} \otimes \Delta_U) \circ \Delta_U(\overline{T})$, $(\epsilon_U \otimes \operatorname{Id}) \circ \Delta_U(\overline{T}) = (\operatorname{Id} \otimes \epsilon_U) \circ \Delta_U(\overline{T}) = (\overline{T})$. Since Proposition 2.4, we know U is linear spanned by $\{\overline{T} \mid T \in \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ and hence $(U, \Delta_U, \epsilon_U)$ is a coalgebra.

Proposition 2.8. $(U, \Delta_U, \epsilon_U) \cong (V, \Delta_V, \epsilon_V)$ as coalgebra.

Proof. Because $\operatorname{coend}(\mathcal{F})$ is an initial object of Vect_k , there exists invertible linear maps $\varphi : U \to V$ such that $\varphi(i_X^U(T)) = i_X^V(T)$. Then we will check that φ is a coalgebra map. Directly we have $\Delta_V(\varphi(i_X^U(T))) = (i_X^V \otimes i_X^V) \circ \Delta_X(T) = (\varphi \otimes \varphi) \circ$ $\Delta_U(i_X^U(T))$ and $\epsilon_U(i_X^U(T)) = \epsilon_X(T) = \epsilon_V(\varphi(i_X^U(T)))$. Note that U is linear spanned by $\{i_X^U(T) \mid T \in \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ and hence φ is a coalgebra isomorphism. \Box We already saw in Example 2.5 that $\operatorname{coend}(\mathcal{T})$ can reconstruct C as vector space, furthermore, the following example shows that $\operatorname{coend}(\mathcal{T})$ also reconstruct C as coalgebra.

Example 2.9. Let $\mathcal{T} : \mathcal{C} \longrightarrow Vect_k^f$ be the forgetful functor of Example 2.5, and we have known that C is a realization of coend \mathcal{T} as vector space. Therefore we have a coalgebra structure on C by Definition 2.6 and we denote it by (Δ_C, ϵ_C) . Now let's prove that $(\Delta_C, \epsilon_C) = (\Delta, \epsilon)$, where (Δ, ϵ) is the coalgebra structure of C itself. We still use the notation of Example 2.5 in the following context. Let $c \in C$ and we choose a finite dimensional subcoalgebra C_1 of C which contains the c, then $i_{C_1}(\epsilon \otimes c) = c$ by definition. For convenience, we denote $i_X(T)$ by \overline{T} and hence $c = \overline{\epsilon \otimes c}$. Let $\{x_i\}_{i=1}^n$ be the dual basis for C_1^* , then we have

$$\Delta_C(\overline{\epsilon \otimes c}) = \overline{(\epsilon \otimes c)_{(1)}} \otimes \overline{(\epsilon \otimes c)_{(2)}}$$
$$= \sum_{i=1}^n \overline{(\epsilon \otimes x_i)} \otimes \overline{(x^i \otimes c)}$$
$$= \sum_{i=1}^n x_i \otimes \langle x^i, c_{(1)} \rangle \langle c_{(2)} \rangle$$
$$= c_{(1)} \otimes c_{(2)} = \Delta(c).$$

Due to $\epsilon_C(\overline{\epsilon \otimes c}) = \epsilon_{C_1}(\epsilon \otimes c) = \epsilon(c)$, we get $\epsilon_C = \epsilon$ and hence $(\Delta_C, \epsilon_C) = (\Delta, \epsilon)$. That is to say the coalgebra coend \mathcal{T} reconstruct the coalgebra C.

Since $\operatorname{coend}(\mathcal{F})$ and $\operatorname{end}(\mathcal{F})$ are dual concept, we have the following proposition and we give its proof by using a different way from that in [3, Section 1.10].

Proposition 2.10. [3, Section 1.10] $end(\mathcal{F}) \cong coend(\mathcal{F})^*$ as algebra.

Proof. Assume $\{i_X : \operatorname{Hom}(X, X) \longrightarrow \operatorname{coend}(\mathcal{F})\}_{X \in \operatorname{Ob}(\mathcal{C})}$ is a realization of $\operatorname{coend}(\mathcal{F})$, and let $\{\pi_X : \operatorname{coend}(\mathcal{F})^* \longrightarrow \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ be a family of linear maps which are defined by $\pi_X(\alpha) := \sum_{i,j=1}^n \alpha \circ i_X(x^i \otimes x_j)x^j \otimes x_i$ for $X \in \operatorname{Ob}(\mathcal{C})$, where $\{x^i\}_{i=1}^n$ is the dual basis of $\mathcal{F}(X)^*$ corresponding with a given basis $\{x_i\}_{i=1}^n$ of $\mathcal{F}(X)$ and $(x^i \otimes x_j)(x) := x^i(x)x_j$, then we can see that $\{\pi_X\}_{X \in \operatorname{Ob}(\mathcal{C})}$ are algebra maps due to $\{i_X\}_{X \in \operatorname{Ob}(\mathcal{C})}$ are coalgebra maps. To complete the proof, we only need to show that $\{\pi_X : \operatorname{coend}(\mathcal{F})^* \longrightarrow \operatorname{Hom}(X, X)\}_{X \in \operatorname{Ob}(\mathcal{C})}$ is a realization of $\operatorname{end}(\mathcal{F})$.

Firstly, we show that $\{\pi_X\}_{X \in Ob(\mathcal{C})}$ satisfy (ii) of Definition 2.1. Let $f \in Hom_{\mathcal{C}}(X, Y)$, $\alpha \in coend(\mathcal{F})^*$, and we assume $\{y^i\}_{i=1}^m$ is the dual basis of $\mathcal{F}(Y)^*$ corresponding with a given basis $\{y_i\}_{i=1}^m$ of $\mathcal{F}(Y)$. Since

$$\mathcal{F}(f) \circ \pi_X(\alpha) = \sum_{i,j=1}^n \alpha \circ i_X(x^i \otimes x_j) x^j \otimes \mathcal{F}(f)(x_i)$$
$$= \sum_{i,j=1}^n \sum_{k=1}^m \alpha \circ i_X(x^i \otimes x_j) x^j \otimes y_k < y^k, \mathcal{F}(f)(x_i) > 0$$

8 CONSTRUCTION OF COEND AND THE RECONSTRUCTION THEOREM OF BIALGEBRAS

$$=\sum_{i=1}^{n}\sum_{k=1}^{m}\alpha \circ i_{X}(y^{k}\circ\mathcal{F}(f)\otimes x_{j})x^{j}\otimes y_{k}$$

$$=\sum_{i=1}^{n}\sum_{k=1}^{m}\alpha \circ i_{X}(y^{k}\otimes\mathcal{F}(f)(x_{j}))x^{j}\otimes y_{k}$$

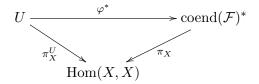
$$=\sum_{i=1}^{n}\sum_{j,k=1}^{m}\alpha \circ i_{X}(y^{k}\otimes < y^{i},\mathcal{F}(f)(x_{j}) > y_{i})x^{j}\otimes y_{k}$$

$$=\sum_{i,k=1}^{m}\alpha \circ i_{X}(y^{k}\otimes y_{i})y^{i}\circ\mathcal{F}(f)\otimes y_{k}$$

$$=\pi_{Y}\circ\mathcal{F}(f)(\alpha),$$

we know $\{\pi_X\}_{X \in Ob(\mathcal{C})}$ satisfy (ii) of Definition 2.1.

Secondly, we prove that $\{\pi_X\}_{X\in Ob(\mathcal{C})}$ such that (iii) of Definition 2.1. If there is a vector space U with linear maps $\{\pi_X^U : U \longrightarrow \operatorname{Hom}(X, X)\}_{X\in Ob(\mathcal{C})}$ and we assume that these maps satisfy (ii) of Definition 2.1, then $\{i_X^U : \operatorname{Hom}(X, X) \longrightarrow U^*\}_{X\in Ob(\mathcal{C})}$ which are defined by $i_X^U(\beta \otimes x)(u) := \beta \circ \pi_X^U(u)(x)$ are linear maps satisfy (ii) of Definition 2.3. Therefore there is a unique linear map $\varphi : \operatorname{coend}(\mathcal{F}) \longrightarrow U^*$ such that $\varphi \circ i_X = i_X^U$. Define $\varphi^* : U \longrightarrow \operatorname{coend}(\mathcal{F})^*$ by $\varphi^*(u)(c) = \varphi(c)(u)$ for $u \in U$ and $c \in \operatorname{coend}(\mathcal{F})$, then we know $\pi_X \circ \varphi^* = \pi_X^U$ due to $\varphi \circ i_X = i_X^U$ and hence the following diagrams commute for all $X \in \operatorname{Ob}(\mathcal{C})$.



Let's prove that a linear map satisfying the above commutative diagrams is unique. Assume that there is another linear map $\phi: U \longrightarrow \operatorname{coend}(\mathcal{F})^*$ such that $\pi_X \circ \phi = \pi_X^U$, then $\pi_X(\phi(u)) = \pi_X(\varphi^*(u))$ since we have shown $\pi_X \circ \varphi^* = \pi_X^U$. But $\pi_X(\alpha) = \sum_{i,j=1}^n \alpha \circ i_X(x^i \otimes x_j) x^j \otimes x_i$ for $\alpha \in \operatorname{coend}(\mathcal{F})^*$ by definition, so $\phi(u) \circ i_X = \varphi^*(u) \circ i_X$ for $X \in \operatorname{Ob}(\mathcal{C})$. This implies $\phi(u) = \varphi^*(u)$ and hence φ^* is unique if it satisfies the above diagrams. \Box

3. Reconstruction theorem of bialgebras

We assume that $(\mathcal{C}, \otimes, I)$ is a strict tensor category and $(\mathcal{F}, \mathrm{Id}_I, \mathcal{F}_2)$ is a tensor functor from \mathcal{C} to Vect_k^f in this section. Recall that if \mathcal{C} is only a k-linear abelian category and \mathcal{F} is a k-linear functor then we can only get coalgebra structure of $\operatorname{coend}(\mathcal{F})$, but now we've added a tensor structure to \mathcal{C} , naturally we can think of adding some information to $\operatorname{coend}(\mathcal{F})$. In order to express this idea precisely, we need the following lemmas. Define $\mathcal{F} \otimes \mathcal{F} : \mathcal{C} \times \mathcal{C} \longrightarrow \operatorname{Vect}_k^f$ by $(\mathcal{F} \otimes \mathcal{F})(X, Y) = \mathcal{F}(X) \otimes \mathcal{F}(Y), \ (\mathcal{F} \otimes \mathcal{F})(f, g) =$ $\mathcal{F}(f) \otimes \mathcal{F}(g)$ for $X, Y \in \operatorname{Ob}(\mathcal{C})$ and $f \in \operatorname{Hom}_{\mathcal{C}}(X, X'), \ g \in \operatorname{Hom}_{\mathcal{C}}(Y, Y')$, then we have the following result. The proof of it is different from that in [2, Section 8]. **Lemma 3.1.** [2, Section 8] coend($\mathcal{F} \otimes \mathcal{F}$) \cong coend(\mathcal{F}) \otimes coend(\mathcal{F}) as coalgebra, where coend(\mathcal{F}) \otimes coend(\mathcal{F}) has the tensor product coalgebra structure.

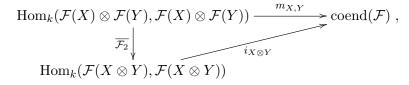
Proof. Assume $\{i_X : \operatorname{Hom}(X, X) \longrightarrow \operatorname{coend}(\mathcal{F})\}_{X \in \operatorname{Ob}(\mathcal{C})}$ is a realization of $\operatorname{coend}(\mathcal{F})$, and we define $i_{X,Y} : \operatorname{Hom}_k(\mathcal{F}(X) \otimes \mathcal{F}(Y), \mathcal{F}(X) \otimes \mathcal{F}(Y)) \longrightarrow \operatorname{coend}(\mathcal{F}) \otimes \operatorname{coend}(\mathcal{F})$ by $i_{X,Y}(S \otimes T) = i_X(S) \otimes i_Y(T)$ for $S \in \operatorname{Hom}(X, X), T \in \operatorname{Hom}(\mathcal{F}(Y), \mathcal{F}(Y))$. It can be seen that $\operatorname{coend}(\mathcal{F}) \otimes \operatorname{coend}(\mathcal{F})$ with these maps is a realization of $\operatorname{coend}(\mathcal{F} \otimes \mathcal{F})$ and $\{i_{X,Y}\}_{X,Y \in \operatorname{Ob}(\mathcal{C})}$ are coalgebra maps, so $\operatorname{coend}(\mathcal{F} \otimes \mathcal{F}) \cong \operatorname{coend}(\mathcal{F}) \otimes \operatorname{coend}(\mathcal{F})$ as coalgebra.

Let $\{v_i\}_{i=1}^n$ be a basis for V and let $\{v^i\}_{i=1}^n$ be the dual basis for V^* , and we recall that the comatrix coalgebra $\operatorname{Hom}_k(V, V)$ is defined by $\Delta(\beta \otimes v) := \sum_{i=1}^n (\beta \otimes v_i) \otimes (v^i \otimes v)$ and $\epsilon(\beta \otimes v) := \beta(v)$, where $(\beta \otimes v)(w) := \beta(w)v$ for $\beta \in V^*$, $v, w \in V$, then we have

Lemma 3.2. Assume $P \in \operatorname{Hom}_k(V, V)$ and it is invertible, then $\varphi_P : \operatorname{Hom}_k(V, V) \longrightarrow \operatorname{Hom}_k(V, V)$ is a coalgebra automorphism, where $\varphi_P(T) := PTP^{-1}$.

Proof. Let $\{v_i\}_{i=1}^n$ be a basis for V, and we consider the non-degenerate dual pair $\langle , \rangle \colon \operatorname{Hom}_k(V,V) \times \operatorname{Hom}_k(V,V) \longrightarrow k$ which is defined by $\langle \beta \otimes v, \gamma \otimes w \rangle = \beta(w)\gamma(v)$, where $(\beta \otimes v)(y) := \beta(y)v$ and $(\gamma \otimes w)(y) := \gamma(y)w$. Then we can define ϕ_P : $\operatorname{Hom}_k(V,V) \times \operatorname{Hom}_k(V,V) \longrightarrow k$ through the equation $\langle \phi_P(T), S \rangle = \langle T, \varphi_P(S) \rangle$, and we can check that $\phi_P(T) = P^t T(P^t)^{-1}$ where P^t is the transpose matrix of P for the given basis $\{v_i\}_{i=1}^n$ of V. Therefore ϕ_P is an algebra map, which implies φ_P is a coalgebra map.

Given a realization of coend(\mathcal{F}) by $\{i_X : \text{Hom}(X, X) \longrightarrow \text{coend}(\mathcal{F})\}_{X \in \text{Ob}(\mathcal{C})}$, and we denote $i_X(T)$ by \overline{T} for $T \in \text{Hom}(X, X)$. Due to Lemma 3.1, we can use the following commute diagrams for all $X, Y \in \text{Ob}(\mathcal{C})$ to define multiplication of coend(\mathcal{F})



where $\overline{\mathcal{F}_2}(S \otimes T) := \mathcal{F}_2(S \otimes T)\mathcal{F}_2^{-1}$ for $S \in \operatorname{Hom}(X,X), T \in \operatorname{Hom}(Y,Y)$. Then the above commute diagrams determine the product of $\operatorname{coend}(\mathcal{F})$ by $m(\overline{S} \otimes \overline{T}) = \overline{\mathcal{F}_2(S \otimes T)\mathcal{F}_2^{-1}}$. Moreover if we define unit η of $\operatorname{coend}(\mathcal{F})$ by $\eta := i_I$, then we have

Proposition 3.3. (coend(\mathcal{F}), Δ , ϵ , m, η) is a bialgebra.

Proof. Firstly, we show $(\operatorname{coend}(\mathcal{F}), m, \eta)$ is an algebra. For simple, we denote the identity map from $\operatorname{coend}(\mathcal{F})$ to $\operatorname{coend}(\mathcal{F})$ by id. By definition, $m \circ (m \otimes id)(\overline{W}) = i_{(X \otimes Y) \otimes Z}[\mathcal{F}_2 \circ (\mathcal{F}_2 \otimes id) \circ W \circ (\mathcal{F}_2 \otimes id)^{-1} \circ \mathcal{F}_2^{-1}]$ and $m \circ (id_X \otimes m)(\overline{W}) = i_{X \otimes (Y \otimes Z)}[\mathcal{F}_2 \circ (id \otimes \mathcal{F}_2) \circ W \circ (id \otimes \mathcal{F}_2)^{-1} \circ \mathcal{F}_2^{-1}]$ where $W \in \operatorname{Hom}_k(\mathcal{F}(X)^{\otimes 3}, \mathcal{F}(X)^{\otimes 3})$. Since \mathcal{C} is strict and $[\mathcal{F}_2 \circ (\mathcal{F}_2 \otimes id) = \mathcal{F}_2 \circ (id \otimes \mathcal{F}_2)$ due to $(\mathcal{F}, \operatorname{Id}_I, \mathcal{F}_2)$ is a tensor functor, we know m satisfy associativity. Due to $m \circ (id \otimes \eta)(\overline{S}) = i_X[(\mathcal{F}_2)_{X,I}(S \otimes 1)(\mathcal{F}_2^{-1})_{X,I}] = \overline{S}$, we

have $m \circ (id \otimes \eta) = id$. Similarly, we get $(id \otimes \eta) \circ m = id$ and hence $(\text{coend}(\mathcal{F}), m, \eta)$ is an algebra.

Secondly, we show m, η are coalgebra maps. It can be seen that η is a coalgebra map by definition of coalgebra structure of coend(\mathcal{F}). To prove m is a coalgebra map, we need only to check that $\{m_{X,Y}\}_{X,Y \in Ob(\mathcal{C})}$ are coalgebra maps. We have known $i_{X \otimes Y}$ is a coalgebra map since the definition of coalgebra structure of coend(\mathcal{F}). Because $m_{X,Y} = i_{X \otimes Y} \circ \overline{\mathcal{F}_2}$ and $\overline{\mathcal{F}_2}$ is a coalgebra map by Lemma 3.2, we get that $m_{X,Y}$ is a coalgebra map and hence we have completed the proof.

Since $\operatorname{coend}(\mathcal{F})$ is a bialgebra, we know that finite dimensional right comodules of $\operatorname{coend}(\mathcal{F})$ is a strict tensor category and we denote it by $\mathcal{C}_{\mathcal{F}}$. Then the tensor functor \mathcal{F} induces a unique tensor functor $\mathcal{E}: \mathcal{C} \longrightarrow \mathcal{C}_{\mathcal{F}}$ satisfies $\mathcal{F} = \mathcal{F}' \circ \mathcal{E}$ and $\mathcal{F}_2 = \mathcal{F}'_2 \circ \mathcal{E}_2$, where $\mathcal{F}': \mathcal{C}_{\mathcal{F}} \longrightarrow \operatorname{Vect}^f_k$ is the forgetful functor. A natural question is when \mathcal{E} is an equivalent tensor functor? The following reconstruction theorem of bialgebras is the answer to this question.

Theorem 3.4. [2, Theorem 3] If \mathcal{F} is exact and faithful, then \mathcal{E} is an equivalence of tensor functor.

References

- P. Schauenburg, Tannaka duality for arbitrary Hopf algebras, Algebra Berichte [Algebra Reports], 66. Verlag Reinhard Fischer, Munich, 1992. ii+57 pp. ISBN 3-88927-100-6.
- [2] A. Joyal, R. Street, An introduction to Tannaka duality and quantum groups, Category theory (Como, 1990), 413-492, Lecture Notes in Math., 1488, Springer, Berlin, 1991.
- [3] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, Mathematical Surveys and Monographs, 205. American Mathematical Society, Providence, RI, 2015. xvi+343 pp. ISBN 978-1-4704-2024-6.
- [4] S. Mac Lane, Categories for the working mathematician, Second edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998. xii+314 pp. \$54.95. ISBN 0-387-98403-8.

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, CHINA

E-mail address: dg1721021@smail.nju.edu.cn